
IMRT Decreased the Normal Lung Volume Irradiated Compared to 3DCRT in patients with NSCLC.

Hasan Murshed

Statement of Problem

- Correlation between dose and LC for NSCLC from published data.
- Increasing RT dose improves LC.

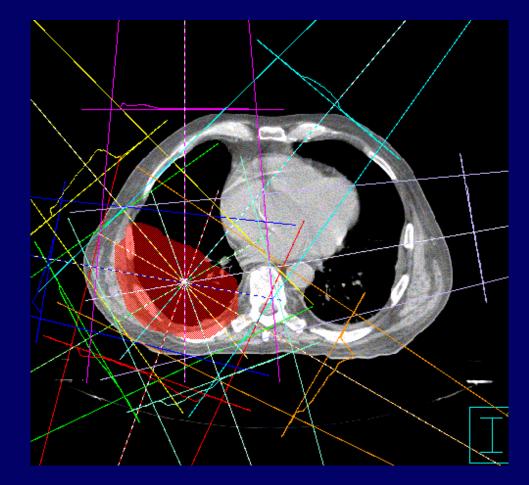
Vijayakumar et al. Int J Radiat Onc Aug; 21(30): 779-85

Statement of Problem

• Results: in multivariate only V20 significant.

	Pneumonitis		
V20	gr 2	gr 3-5	fatal
(%)	(%)	(%)	(total pt)
< 22	0	0	
22-31	8	8	
32-40	13	5	1
> 40	19	23	3

- <u>Concl:</u>
 - Strong correlation between V20 and severity of pneumonitis.
 - V20 is a useful parameter to evaluate pneumonitis.



 To investigate the potential dosimetric improvements with respect to tumor coverage and normal-tissue sparing in using IMRT to 3DCRT for NSCLC.

- Forty-one pts with LA NSCLC
- <u>3DCRT tech</u>
 - CT simulations for all
 - 3-6 beams, 6 and 18 MV photons
 - 63 Gy to 95% of the PTV

• IMRT tech

- 9 equispaced coplanar
- 6 MV beams

• IMRT tech

- Target volumes, isocenter, prescription same as 3D
- Inverse planning used to optimize beam fluences
- Leaf motion generated
- Actual fluence used to calculate deliverable dose distribution
- Heterogeneity correction, Pinnacle system

Treatment Plan Evaluation

- Tumors/Treatment
 - Conformity Index CI = Vdp/Vptv
 - Heterogeneity Index HI = D5%/D95%
 - MUs

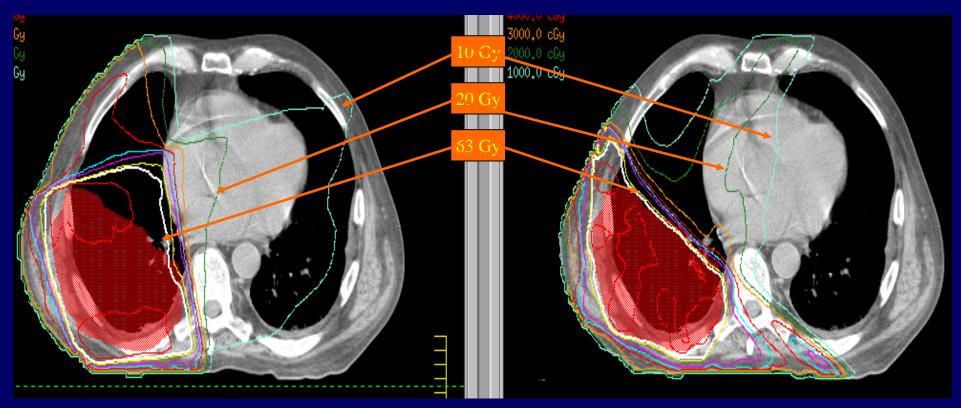
Treatment Plan Evaluation

• Normal Lung

- Volume treated above 5, 10, 20 Gy
- Biologically effective volume, Veff
- Mean Lung dose
- Integral Lung dose

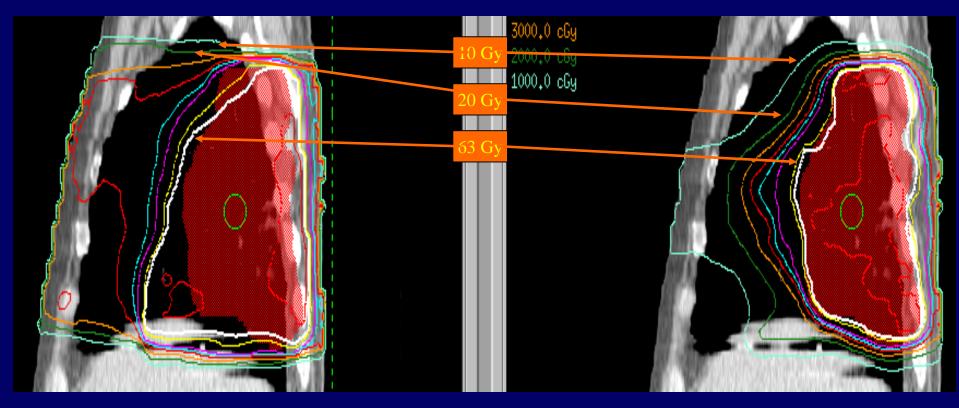
Treatment Plan Evaluation

- Critical structures
 - Esophagus above 55 Gy
 - Heart above 45 Gy
 - Spinal cord above 45, 50, max

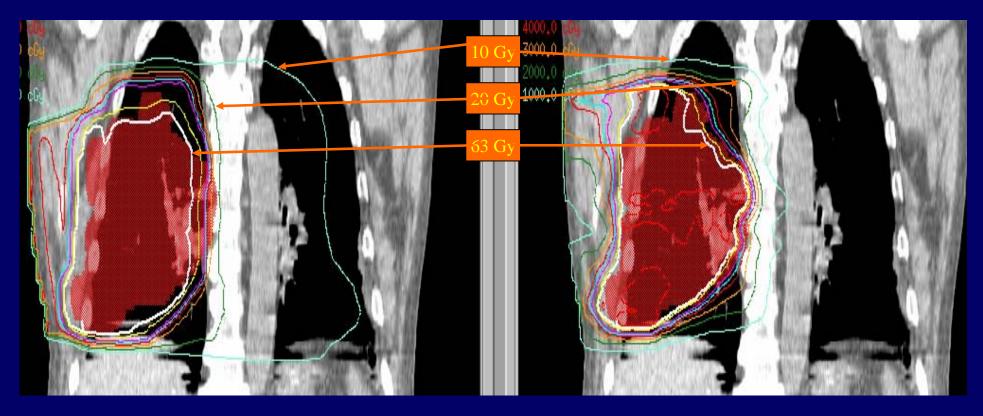

Treatment Plan Evaluation

- Thoracic Norrnal Tissue
 - Volume enclosed by 5, 10, 20, 30, 40 Gy
 - Thoracic tissue Integral dose

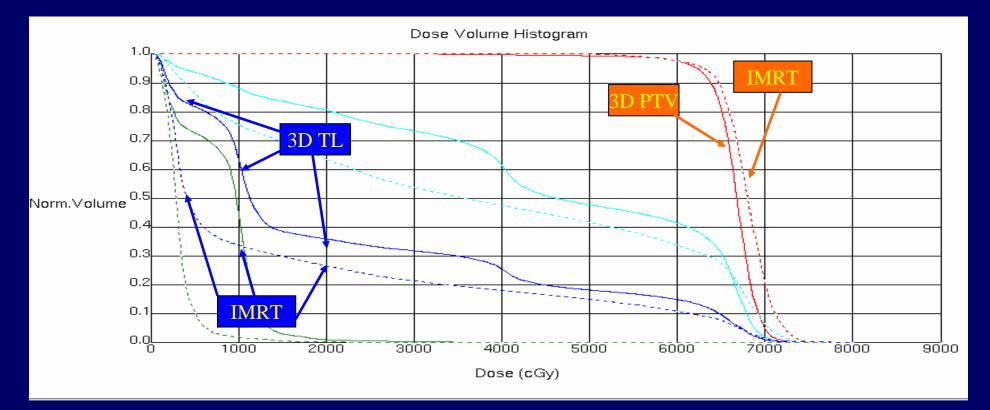
- 73 yom
- RUL non-small cell cancer
- Recurrent SCCa
- GTV = 338 cc, PTV = 1108 cc


• 3D

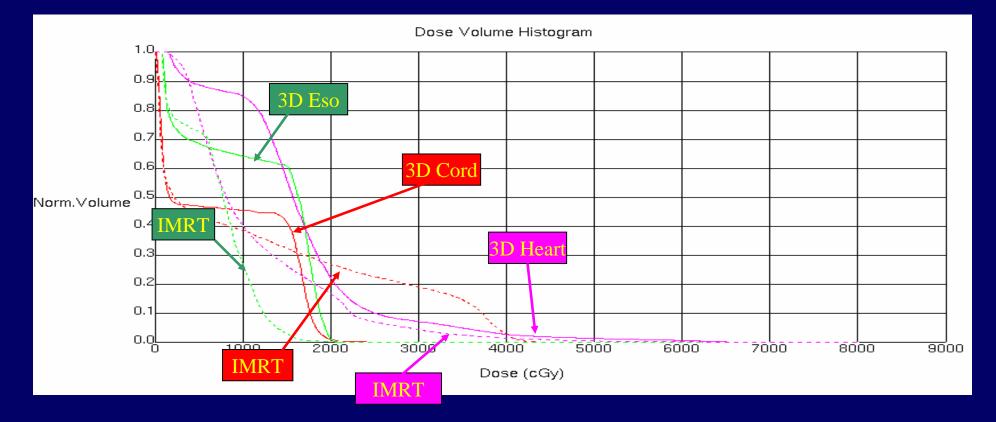
IMRT


• 3D

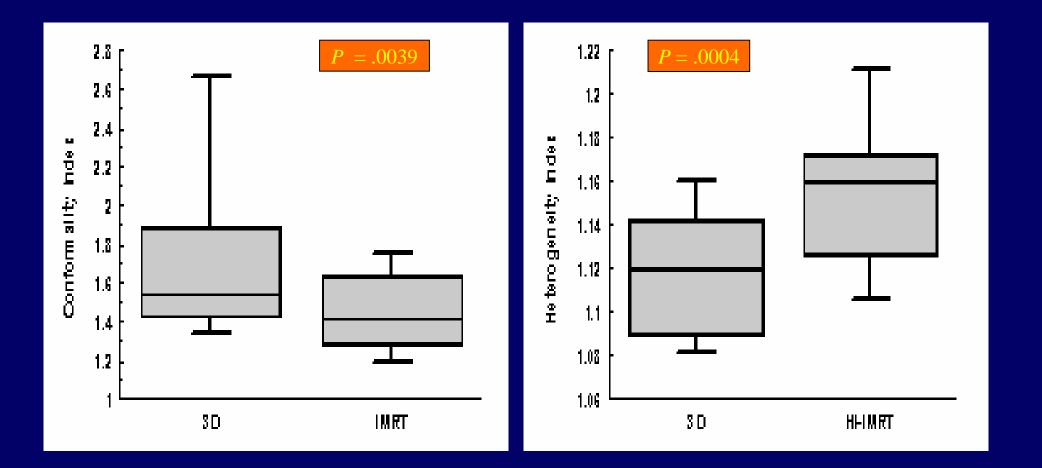
IMRT



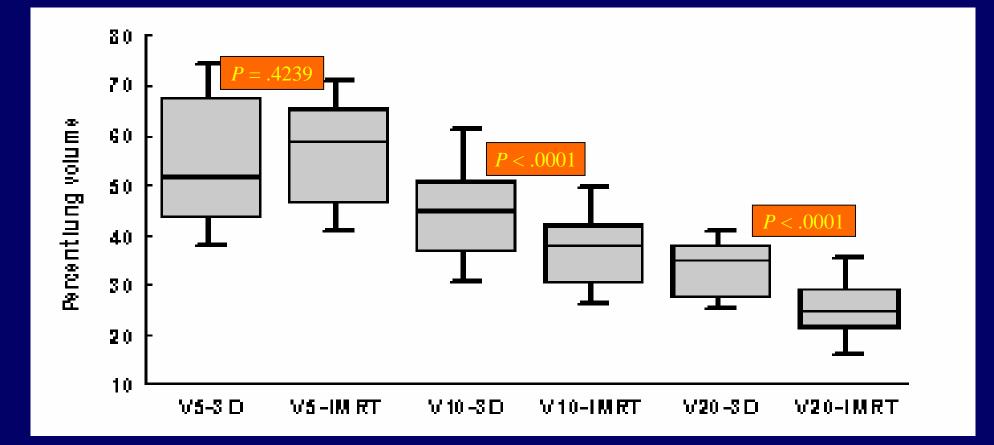
• 3D


IMRT

• 3D/IMRT



• 3D/IMRT



Parameters	3D	IMRT	p value
	Median (range)	Median (range)	
Conformality Index	1.54 (1.26-4.53)	1.41 (1.06-2.09)	0.0039
Heterogeneity Index	1.12 (1.06-1.22)	1.16 (1.06-1.43)	0.0004
Monitor Units	266 (166-991)	1884 (953-3838)	< 0.0001

Parameters	3D	IMRT	p value
	Median (range)	Median (range)	
Total Lung V5 (%)	52 (27. 93-86.00)	59 (25.00-78.00)	0.4239
Total Lung V10 (%)	45 (21.99-64.00)	38 (18.00-59.00)	< 0.0001
Total Lung V20 (%)	35 ((16.88-54.63)	25 (13.00-42.620	< 0.0001
Total Lung Veff (%)	70.96 (32.52-101.13)	57.63 (27.75-94.68)	< 0.0001
Total Lung Mean Dose (Gy)	19.21 (10.07-29.06)	17.20 (8.76-26.92)	< 0.0001
Total Lung Integral Dose (J)	18.62 (5.26-36.42)	15.82 (4.58-33.6)	< 0.0001

- Improvement of V10, V20 and TLMD with IMRT were analyzed as a function of
 - tumor location right, left, upper, lower
 - tumor sizes GTV, PTV

 No parameters had significant effect on lung sparing

Parameters	3D	IMRT	p value
	Median (range)	Median (range)	
Esophagus (% cc at 55Gy)	35 (0.00-72.00)	28.82 (0.00-71.00)	< 0.0001
Heart (% cc at 40 Gy)	13 (0.00-58.00)	11 (0.00-59.00)	0.0036
Spinal cord (% cc at 45 Gy)	0.010 (0.00-33.00)	0.900 (0.00-31.00)	0.0261
Spinal cord (Maximum dose	45.8 (10.60-55.40)	48.6 (38.60-63.20)	0.0002

Parameters	3D	IMRT	p value
	Median (range)	Median (range)	
Thoracic Normal Tissue V5 (cc)	5658 (3040.30-11596.00)	6929 (2759.00-10788.00)	0.0064
Thoracic Normal Tissue V20 (cc)	3919 (1919.00-6776.00)	3398 (1509.00-6535.00)	0.0014
Thoracic Normal Tissue V40 (cc)	3213 (1560.00-5489.00)	2673 (1242.00-5402.00)	< 0.0001
Thoracic Normal Tissue Integral D	180.46 (87.97-311.92)	185.71 (72.32-13511.00)	0.7805

- IMRT planning significantly improved target coverage
- Reduced the volume of normal lung irradiated
- Reduced the volume of critical structures

 IMRT appears to be a viable option for treating NSCLC with the possibility of additional reduction of the normal tissue toxicity and/or dose escalation.

Conclusions

- Future Plan
- Reduce the number of radiation beams

 to significantly decrease V5
 while maintaining other goals of treatment
- Clinical implementation of IMRT for NSCLC

 via protocol at MDA